Dynamic Programming for Optimal Control of Stochastic McKean-Vlasov Dynamics
نویسندگان
چکیده
We study the optimal control of general stochastic McKean-Vlasov equation. Such problem is motivated originally from the asymptotic formulation of cooperative equilibrium for a large population of particles (players) in mean-field interaction under common noise. Our first main result is to state a dynamic programming principle for the value function in the Wasserstein space of probability measures, which is proved from a flow property of the conditional law of the controlled state process. Next, by relying on the notion of differentiability with respect to probability measures due to P.L. Lions [35], and Itô’s formula along a flow of conditional measures, we derive the dynamic programming Hamilton-Jacobi-Bellman equation, and prove the viscosity property together with a uniqueness result for the value function. Finally, we solve explicitly the linear-quadratic stochastic McKean-Vlasov control problem and give an application to an interbank systemic risk model with common noise. MSC Classification: 93E20, 60H30, 60K35.
منابع مشابه
Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications
We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional. The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration. Semi closed-loop strategies are introduced, and following the dynamic programming approach in (Pham and Wei, Dynamic...
متن کاملDiscrete time McKean-Vlasov control problem: a dynamic programming approach
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate l...
متن کاملBellman equation and viscosity solutions for mean-field stochastic control problem
We consider the stochastic optimal control problem of McKean-Vlasov stochastic differential equation where the coefficients may depend upon the joint law of the state and control. By using feedback controls, we reformulate the problem into a deterministic control problem with only the marginal distribution of the process as controlled state variable, and prove that dynamic programming principle...
متن کاملLarge Population Stochastic Dynamic Games: Closed-loop Mckean-vlasov Systems and the Nash Certainty Equivalence Principle
Abstract. We consider stochastic dynamic games in large population conditions where multiclass agents are weakly coupled via their individual dynamics and costs. We approach this large population game problem by the so-called Nash Certainty Equivalence (NCE) Principle which leads to a decentralized control synthesis. The McKean-Vlasov NCE method presented in this paper has a close connection wi...
متن کاملForward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 55 شماره
صفحات -
تاریخ انتشار 2017